Submit?Status
Description
Calculate the value of the sum:?nmod1?+?nmod2?+?nmod3?+ ... +?nmodm. As the result can be very large,you should print the value modulo?109?+?7?(the remainder when divided by?109?+?7).
The modulo operator?amodb?stands for the remainder after dividing?a?by?b. For example?10mod3?=?1.
Input
The only line contains two integers?n,?m?(1?≤?n,?m?≤?1013) — the parameters of the sum.
Output
Print integer?s?— the value of the required sum modulo?109?+?7.
Sample Input
3 4
4
4 4
1
1 1
0
Source
Educational Codeforces Round 5
//题意就不说了,直接上大神的思路了,很6的方法
题意:求解
思路:我们化简
这样原式
首先
#include<cstdio> #include<cmath> #include<iostream> #include<cstdlib> #include<cstring> #include<queue> #include<algorithm> #define IN __int64 #define M 1000000007 using namespace std; IN kp(IN a,IN n) { IN ans = 1; while(n) { if(n&1) ans=ans*a%M; a=a*a%M; n>>=1; } return ans; } int main() { IN n,m,sum,ans1,i,j,nn; while(scanf("%I64d%I64d",&n,&m)!=EOF) { sum=n%M*(m%M)%M; nn=sqrt(n); ans1=0; for(i=1;i<=min(m,nn);i++) ans1=(ans1+n/i%M*i%M)%M; if(m>nn) { if(nn*nn==n) nn--; for(i=1;i<=nn;i++) { IN r=min(m,n/i); IN l=n/(i+1)+1; if(l>r||r<=nn) continue; ans1=(ans1+(l+r)%M*((r-l+1)%M)%M*kp(2,M-2)%M*i%M)%M; } } printf("%I64d\n",(sum-ans1+M)%M); } return 0; }